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phase-slip in charge-density waves: predictions of a 
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H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL, UK 

Received 15 August 1988, in final form 13 March 1989 

Abstract. A simple mean-field model is used to examine the response to stress of the charge- 
density wave (CDW) in a Peierls-Frohlich conductor. The strain in the CDW is assumed to be 
uniform on the scale of the coherence length, and allowance is made for long-range Coulomb 
interactions, screened by any chains not concerned in the CDW. Details are given of the elastic 
properties of the CDW both in the linear regime of small strain and in the non-linear case of 
strain approaching the elastic limit, beyond which the CDW collapses in a process of phase- 
slip that the model is not adequate to describe. The extent to which the model may describe 
real CDWS is discussed, with particular reference to the possible relevance of the elastic limit 
to the threshold field for Frohlich conduction. 

1. Introuduction 

In NbSe3, and some other chain-like metallic compounds, the field-induced motion 
of incommensurate charge-density waves (CDW) gives rise to most unusual electrical 
properties (see [l] for reviews). The CDW develop, below a critical value Tp of the 
temperature T ,  apparently as a result of the Peierls instability [2] of the quasi-low- 
dimensional electron-lattice system. Their motion, which is associated with a drift of 
the entire electron distribution and leads to cooperative conduction as proposed by 
Frohlich [3], is manifest in non-linear conductivity in steady fields % stronger than a 
threshold value ZT, and in numerous switching, hysteresis and memory effects. 

The basis of most attempts to account for these phenomena has been the semi- 
classical phenomenological model of Fukuyama, Lee and Rice (FLR) [4, 51. This treats 
the CDW as a continuous, elastically deformable object that ‘slides’ over a ‘pinning’ 
potential, responsible for CeT, due supposedly to randomly distributed impurities. 

However, although the features of such motion [ 6 8 ]  bear a qualitative resemblance 
to much that is observed, it is obvious that the FLR model cannot apply universally. 
Inelastic behaviour of the CDW, in processes of phase-slip, is clearly essential to sustained 
Frohlich conduction when (as is usual) terminals are arranged so that the continuously 
moving region of CDW adjoins others that suffer no net translation. Further, it now seems 
that phase-slip occurs within the moving region itself: there is substantial evidence [9] 
in support of the view of Tucker et a1 [lo] that the pinning is overcome, not by the sliding 
of the CDW as a continuous body, but rather by the local collapse of its order parameter, 
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followed by re-formation with altered phase. Clearly, if phase-slip is necesary for motion 
to occur, gT represents, at least in part, an elastic limit of the CDW. 

The literature contains several discussions of the response of CDW to stress. The 
linear elastic regime, close to equilibrium, has been treated microscopically, most 
recently by Takada and co-workers [ll, 121 in connection with wave-like excitations of 
the CDW. Most discussion of the non-linear behaviour concerned in phase-slip has been 
at a phenomenological level, the treatments by Ong and Maki [ 131 and by Feinberg and 
Friedel [14] of the generation of phase vortices (dislocations) by non-uniform current 
flow being examples. Microscopically based analyses of phase-slip are available, how- 
ever, for two one-dimensional situations, with current density uniform in the transverse 
direction. The case of a gapless CDW, analogous to a gapless superconductor, is analysed 
by Batistit et a1 [15] in terms of a time-dependent Landau equation, the parameters of 
which are justifiable in microscopic terms both in order of magnitude and in their 
variation with temperature. Of more practical interest is the case of a CDW whose energy 
gap is not suppressed in equilibrium, to which Artemenko, Volkov and Kruglov (AVK) 
[16] apply time-dependent Green function techniques developed in connection with 
non-equilibrium superconductivity. 

While such advanced techniques are needed to deal with the dynamics of the phase- 
slip process, the static problem of finding the threshold for phase-slip to commence can, 
in certain circumstances, be solved much more simply. The essential requirement is that, 
below threshold, the strain in the CDW is uniform on the scale of the coherence lengths 
511 and EL in the longitudinal and transverse directions. With the contribution of other 
derivatives of the order parameter ?/J then negligible, the free energy at given Tbecomes 
a function only of the strain, from which can be determined the elastic limit beyond 
which phase-slip becomes inevitable. This treatment in terms of macroscopic elasticity 
cannot, of course, be extended to the phase-slip process itself, when li, collapses on a 
scale of the order of E;, .  It should, however, apply to its onset in those effectively one- 
dimensional situations where the phase-slip occurs on surfaces, normal to the chains, 
and having longitudinal separation and transverse dimensions large in comparison 
respectively with and E , .  

Although AVK analyse such a situation, with strain uniform until phase-slip com- 
mences, they obtain the elastic limit only as a low-temperature approximation, which 
proves to require correction when T > 0. 

In this paper the limit is found by the much simpler method of imposing changes in 
wavevector on the CDW in a Peierls quasi-one-dimensional metal. The problem can 
be formulated in terms of the occupation of Bloch states, leading to an elementary 
microscopic model of CDW elasticity, which nevertheless covers the entire range of 
temperature, is not limited to the linear regime, and can take account of long-range 
Coulomb interactions which, as AVK point out, play an essential part in the phase-slip 
process. 

As, despite the simplicityof themodel, few quantitative detailsof itselastic properties 
are available in the literature, its behaviour up to the elastic limit is examined in some 
detail. Its possible relevance to experiment is then discussed. 

2. Strained CDW in the mean-field approximation 

2.1. Basic assumptions 

As is usual in mean-field treatments (notably that of Lee, Rice and Anderson [17, 18]), 
the CDW is assumed to arise from the Peierls instability in a quasi-one-dimensional energy 
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band, with the lattice replaced by an elastically deformable continuum, and fluctuations 
(and thus phonons other than in the macroscopically occupied state representing the 
static Peierls distortion) ignored. Only the long-range effects of Coulomb interactions 
are taken into account explicitly, through their contribution to the potential energy 
when distortion of the CDW leads to a departure from charge neutrality on a macroscopic 
scale. Some allowance for the microscopic effects of Coulomb forces is, however, implicit 
in the model: electron-electron interactions within chains influence the band structure, 
and those between chains assist the correlation between their Peierls distortions that 
mean-field theory assumes. 

With these assumptions, the system behaves as one of independent electrons moving 
in the periodic potential produced by the Peierls distortion. The potential, which will be 
assumed to vary as CO@ * r + rp), with Q parallel to the chain axis and rp independent 
of position r ,  generates an energy gap 2A in the electronic energy spectrum. 

The single-particle states then have energies 

where 

and E is the energy in the absence of lattice distortion. Except where noted otherwise, 
energies will be defined with reference to the band structure, and measured from the 
Fermi level 

The free energy of the electron-lattice system, per unit volume and at temperature 
T = (pkB)-', is then 

of the undistorted system (corresponding to k = kkF) .  

F =  $N(EF)A-~A~ f nEF - (1/p) h ( 1  + eXp[-p(Ek - EF)]} (2) 
k 

where n is the electron density (on a scale large compared with l/Q) and E, is the Fermi 
energy when the Peierls distortion is present; the sum is restricted to k > 0 because each 
k generates two values of Ek.  The term in A2  expresses the elastic energy of the Peierls 
distortion, in terms of a dimensionless electron-phonon coupling parameter A ,  and the 
density of electron states for the undistorted system, N(E). 

As only a small range of Q close to 2kF is of interest, A will be regarded as constant, 
and Ek assumed to vary linearly with k ,  giving the idealised band structure of figure 1. 
The approximations are absorbed by setting an appropriate lower limit - W for E. 

Expression (2) can then be written as 

+ cosh[p( Y2 + A*) '/*I}] dY (3b) 

where no = NWis the electron density before distortion, and it is assumed that W B 2, 
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( a 1  I b )  

Figure 1. Linearised band structures: (a) in the absence of a CDW, and (b )  with CDW present 
having Q > 2kF. Energies are measured from the Fermi level in (a). In ( b ) ,  on account of 
the energy gap at k = &+Q, the Fermi energy is displaced to a new value EF. 

l/p, A. The static behaviour of the CDW is found by minimising F with respect to A ,  
subject to such constraints on Q and EF (or n )  as may be appropriate. 

2.2  The undistorted CDW 

The properties of the model in the absence of constraint on Q are well known, but are 
repeated here for later reference. In equilibrium one has Q = 2kF and n = no, giving 
Z = 0, EF = 0. The free energy 

W 
F =  iNA-’A2 - ( N / p ) /  21n{2cosh[3p(Y2 + A2)l/’]}dY (4) 

0 

is minimised when 

&Pw tanh[i/3(Y2 + A2)lI2] 
d(ipY) = 1/A jn @( Y2 + A*)  ‘1’ 

which is the usual Bcs-like equation for A (  T ) .  The solution at zero temperature is 

A0 = 2W exp( - l / A )  (6) 

A0 = LVkBTp (7) 

and is related to the Peierls temperature T p  by 

with a = 1.7639 (=n exp( - C ) ,  C = 0.5772 being Euler’s constant). 

to be 
The reduction in free energy due to the formation of the CDW proves, when T = 0, 

- S F  = aNAi. (8) 

2.3. Coulomb forces, screening and distortion of CDW 

Consider now a steady state of the CDW in which Q, in the presence of pinning and the 
applied field %, departs from its preferred value 2kF. For reasons already given, the 
strain (Q - 2kF)/2kF is assumed uniform on the scale of the longitudinal coherence 
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length = W/AkF. It is also assumed to exist over a length Of CDW at least 2n/IQ - 2kF/ ,  
so that the loss or gain of a whole number of wavelengths through phase-slip may reduce 
the total energy. Although the phase-slip may be induced thermally (and even, in 
principle, by quantum-mechanical tunnelling), attention is confined here to the case 
where the CDW collapses because the strain exceeds the elastic limit. 

As long as phase continuity is maintained, change in Q implies divergence in the 
Frohlich current density. If no electrons were to enter or leave the moving charge 
distribution, this would cause any departure of Q from equilibrium to be accompanied 
by a proportionate change in the local electron density n ,  leaving the Fermi level at the 
centre of the energy gap, and the magnitude of the gap almost unaffected. In most 
cases, however, change in n is opposed by Coulomb forces, and reduced also by the 
maintenance of a unique Fermi energy throughout the crystal. As AVK [16] pointed out, 
it is the resulting displacement of E,  from the gap centre that causes A to diminish, and 
eventually to collapse, as strain increases. 

This effect of strain in reducing A is unlikely to be noticeable when the elasticity of 
a CDW is studied by stressing the crystal as a whole. Strain in the CDW then accompanies 
identical strain in the lattice to which it is pinned, and bulk neutrality is preserved without 
EF being displaced from the gap centre. From expression (3b), the increase in free energy 
associated with strain in the CDW is then @Z2,  where Z = (Q/2k, - 1)W. The elastic 
modulus of the CDW is then K = (W/Z)  dF/d ( Z / W )  = n o w ,  as for a one-dimensional 
electron gas [4, 191. 

The redistribution of electrons, in cases where EF does leave the gap centre, is 
popularly said to be effected by ‘screening’ currents, carried by single particles, as 
distinct from Frohlich currents, carried collectively. While the actual transport processes 
are not of immediate concern, it is noted that this two-fluid view is not adequate to 
describe the establishment of equilibrium when Z is large, since the number of single 
particles need not be conserved when A and E,vary. Because of this the term ‘screening’ 
is used below in the following restricted sense. Coulomb interactions are said to be 
unscreened if they prevent the electron density n ,  on the chains that participate in the 
CDW, from departing from its undistorted value no. For n to differ locally from no, the 
accumulated charge must be compensated by the appearance nearby of an opposite 
‘screening’ charge, minimising the cost in electrostatic energy. Screening charges may 
appear elsewhere on the CDW chains, or on other chains not concerned in the CDW (and, 
in principle, on conducting defects within or on the surface of the crystal). 

The role of Coulomb interactions in redistributing electrons, with respect to the 
situation with n CC Q ,  is apparent from the energy level schemes in figure 2. The undi- 
storted CDW ( Z  = 0) is represented in figure 2(a). The situation in a region where Z > 0, 
in the absence of Coulomb interactions, is shown in figure 2(b) for the case where no 
redistribution occurs, and in figure 2(c) for the case of equilibrium with a unique Fermi 
energy E,  (here measured with respect to an external reference) throughout the crystal. 
Equilibrium in the presence of Coulomb interactions is shown in figure 2(d): the band 
is displaced in energy by an amount E, = -eV,, where V,(r) is the electrical potential 
arising from the departure from neutrality, and EF (now the electrochemical potential) 
is again uniform throughout the crystal. 

Figure 2(d) is likely to describe also the local situation in the non-equilibrium steady 
state reached in an applied field % < CeT. A single-particle current now flows, but the 
departure from equilibrium is usually small enough for a (position-dependent) E, to be 
defined, with electron temperature unchanged. Further, as the dielectric constant of the 
crystal will be dominated by the polarisability of the CDW, any accumulation of charge 
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c 

’ 4  
( a 1  I b )  ( c l  I d )  

Figure 2. Energy level schemes showing relation of energy gap to Fermi level in distorted 
CDW. In (a) is shown the undistorted CDW; ( b )  the case of Q > 2kF, if no electrons leave the 
CDW; (c) equilibrium in the absence of Coulomb interactions, with Fermi energy unchanged; 
and (d )  equilibrium in the presence of Coulomb interactions. The actual Fermi energy EFis 
shown as a broken line and the position in the band of the original Fermi energy as a dotted 
line. In (d)  the departure from neutrality causes the band to be displaced in energy by E,. 

not associated with distortion of the CDW may safely be neglected. As its direct con- 
tributions to EF and E, are equal, the applied field then influences the position of EF 
relative to the band structure only through its part in generating the distortion repre- 
sented by 2. 

At any point r the condition of the CDW, when in equilibrium or a steady state as in 
figure 2 ( 4 ,  depends for given Z(r)  on the local value of E,(r) relative to EF. As both 
these depend on Z elsewhere in the crystal (making general solution impracticable), 
discussion will be of the common situation where Z(r )  and E,(r) are distributed sym- 
metrically about zero, so that the electrochemical potential has the value that would 
apply in the absence of distortion. Reverting to the practice of referring electronic 
energies to the band structure, and measuring with respect to its value cF in the absence 
of distortion, the Fermi energy EF(r) in the strained CDW is then everywhere equal to 

A further simplification is made by assuming E, to be determined by the local value 
of n - no; F is then a local function of Z ( r ) ,  and an elastic modulus for the CDW can be 
defined. This assumption is valid when the screening charges are induced on chains not 
involved in the CDW (which proves to be the only situation to which the model applies 
where screening is likely to be appreciable). 

- E,(r). 

In these conditions, the Fermi energy can be expressed as 

EF = -E,  = (n  - no) /NA (9) 
where A is a screening parameter determined by the geometry; A = 0 corresponds to 
the unscreened case, A = to perfect screening (i.e. negligible Coulomb forces). Add- 
ing the appropriate term h(n - qJ2 /NA to expression (3b) ,  the free energy density 
becomes 

F = iNA-‘A2 - 4NAEF + hNZ2 - NZEF 
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when measured with respect to the value when A = 0. The electron density is related to 
EF by 

n = {exp[/3(Ek - EF)] + (11) 
k 

which can be expressed as 

giving a relation between E F  and A.  With E, thus determined, differentiation of (10) 
with respect to A gives 

sinh[/3(Y2 + A2)lI2] Iow (Y2 + A2)1/2{COSh[/3(Z - EF)] + cosh[/3(Y2 + A2)1/2]} d Y =  1/A (13) 

as the condition for F to be minimum. Solution of the simultaneous equations (12) and 
(13) then provides A, E, and, from (lo), F as functions of the strain parameter Z. 

It is then a simple matter to relate the strain Z/W to the stress required to produce 
it, which can be expressed as 

B = dF/d(Z/W) = -no(l  + A)EF (14) 

as may be confirmed by differentiating (IO), and using (12) and (13) to eliminate 
derivatives of E F  and A. 

3. Elastic properties 

3.1. Definitions 

It is convenient, in calculating EF, A, Fand B, to introduce units of Tp for temperature, 
A. for electron energy, NA; (= -46Fo) for free energy density, noAofor stress and n o w  
for elastic modulus, with reduced variables defined as follows: t = T/Tp ,  6 = A/Ao, z = 
'/Ao7 p = EF/A,,y = Y/Ao, w = W/Ao, f = F/NA$ ands = u/noAo. The reduced elas- 
tic modulus K = K/noW is then s /z ,  in the limit z -+ 0. In terms of these, (lo), (12), (13) 
and (14) become respectively 

f = & S 2  ln(2w) - iAp2 + fz2 - zp 

sinh[a(z - p)/t] lo' cosh[a(z - p)/t] + cosh[a(6' + ~ ~ ) l / ~ / t ]  dy  
z + A p =  

sinh[a(a2 + y2)lI2/t] low (6' + y2)1/2{cosh[a(z - p)/t] + cosh[a(d2 + ~ * > l / ~ / t ] }  dy 
ln(2w) = 

and 
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Figure 3. The relation between CDW distortion (represented by the strainparameterz) and (a )  
energy gap 6 ,  ( b )  free energy densityf, and (c) stresss. The curves refer to the temperatures t 
indicated. Units are defined in the text. 

f 

Figure 4. The elastic modulus K (in units of now) 
as a function of reduced temperature t. The 
unscreened case ( A  = 0) is shown by the full curve 
and an example of partial screening ( A  = 0.5) by 
the broken curve. 

s = -(1+ A ) p  

where A was defined in § 2.2. Setting z 4 t in  (17), one obtains 

K =  (1 - Z ) ( l  +A)/ (Z+A)  

where 

dY Iom 1 + cosh[(aS/t)2 + y2]1/2 

Except when tis  close to 0 or 1, these equations have to be solved numerically (though 
only for one value of A: a scaling relation connects solutions for different A). The results 
for the unscreened ( A  = 0) case are given first. 

3.2. Elastic behaviour in the absence of screening 

Figures 3-5 present the results of solving these equations (by iteration of (16) and (17), 
giving S and p ,  and thence f and s from (15) and (18)). The CDW exhibits the expected 
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t t 
( a )  ( b )  

Figure 5.  The elastic limit in the unscreened case. Limiting values s1 of the reduced stress s 
are shown in (a ) ,  and corresponding values z ,  of the strain parameter z in ( b ) ,  as a function 
of reduced temperature t. The broken curve in (a )  shows the phase-slip voltage V,, in units 
of Aa/e. 

linear elastic response to small z ,  and eventually collapses when z exceeds an elastic 
limit. 

The reduction of the energy gap 6 as the magnitude of the strain parameter z increases 
is shown in figure 3(a): 6 decreases monotonically to zero when z reaches a value z 2 ,  
beyond which no CDW is possible. Over most of the temperature range z2  is close to the 
value i, which applies when t = 0. The associated increase in the free energy densityfis 
shown in figure 3(b). 

The relation between reduced stress s (= -,LA) and z is shown in figure 3(c). Except 
at t = 0, Is( at first varies linearly with z ,  but eventually reaches a limiting value s1 (when 
Iz/ = z l ) ,  and thereafter decreases to zero. The situation s = sl, z = z1 represents the 
elastic limit, beyond which, as ds/dz < 0, the CDW is unstable with respect to the 
distribution of strain becoming non-uniform. In the phase-slip that results from this 
instability, strain becomes concentrated into a length ultimately of the order of 511, A 
vanishes locally and the CDW re-forms with reduced distortion. As non-uniformity on 
the scale of 511 is involved, the process, once initiated, lies outside the present treatment. 

The reduced elastic modulus K is shown in figure 4. It rises steadily as t falls, 
becoming infinite when t = 0. Its divergence is a consequence of the unscreened Coulomb 
interactions (whose part in CDW rigidity was noted by Lee, Rice and Anderson [HI). 

The limiting stress s1 (figure 5(a ) )  also rises as t falls, but remains finite at t = 0. The 
corresponding limiting strain z1 (figure 5(b)) necessarily vanishes when t = 1, and also 
when t = 0, as the infinite K / S ~  implies. In effect the CDW, as well as becoming more rigid 
with decrease in temperature, also becomes stronger but more brittle. 

When t = 0, the quantities shown in figure 3 become simple functions of z :  for positive 
z ,  6 = (1 - 2 ~ ) l / ~ , f =  z(1 - 2) - 4 and s = -,LA = 1 - 22. The linear variation off, and 
finite s, for infinitesimal z are symptoms of the rigidity of the CDW when t = 0. 

When tis slightly greater than 0, K can be expressed analytically. With z < t G 1, the 
integral I in (19) approximates to 2(a6/t)K1(a6/t), where K 1  is the modified Hankel 
function; K (=l/I, as Z G 1) is then approximately equal to exp(aL3/t)/(2na6/t)'I2. This 
result has been obtained, in a different context, by Nakane and Takada [ll]. 
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Figure 6.  Stress-strain relationships in the presence of screening, shown in ( a )  for reduced 
temperature t = 0.2, and in ( b )  for t = 0.6. The curves show (for screening parameter A = 
0, 1 and 5 as indicated) the relation between strain parameter z and reduced stress s. 
Metastability is possible when the maximum of s occurs with z greater than the value z2  for 
which the CDW vanishes. The graph inset in (b )  shows, as a function of A ,  the temperature 
t,,, below which this can happen. 

An analytic expression for K exists also when t = 1. With 6 then small, and aG/t G 1, 
I =  1 - g(a6/t)2,  whereg = 0.2132 (=7c(3)/4n2), so that K = g(a6/t)2. An equivalent 
result was obtained by Lee, Rice and Anderson [17]. 

3.3. The effect of screening 

When A > 0, neither 6 nor z + A p  are changed as functions of z - p (since A does not 
appear in (17), or in the integral in (16)). This implies that if the values z = 2, and y = 
y, accompany 6 = 6, when A = 0, then the values of z and ,H that correspond to the 
same gap 6, when A > 0 are related by z + A p  = z ,  and z - p = z ,  - y,. Thus one has 

whence from (IS) 

s =  -p, (21) 

and K = s / z  = (1 - I )  (1 + A)/(I + A), as already found in (19), since I = 2, - p, when 
z ,  G 1. As expected, screening eliminates the low-temperature divergence in K (which 
now approaches (1 + 1/A) as t +- 0), but has little effect when t = 1, since then I = 1. 

The effect on the stress-strain relation is shown in figure 6. The screening, although 
it reduces K, has no effect on the limiting stress sl, as (21) shows. However, the 
corresponding strain z1 is increased and may, withA sufficiently large and tsmall, exceed 
the strain z2 at which the CDW eventually vanishes. Such metastability of the CDW is 
possible (as is evident from (20)) only when zlu - pluA/(l + A) > z2 ,  where zlU is the 
value of z1 when A = 0 and pIu is the corresponding value of p. This condition can be 
satisfied if A > 1, and then only below a critical temperature t,, whose dependence on 
A is shown (inset) in figure 6. 
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3.4.  Coupling to the appliedfield 

The stress 0 arises usually from the force that the applied field 5% exerts on the CDW 
between sites of phase-slip. This force can be expressed (per unit volume) as Fe = -nepc, 
where pc(t, z ) ,  the fraction of electrons effectively concerned in the CDW, was defined 
by Lee and Rice [5] .  As an alternative to their method of first finding the force com- 
municated to the single particles, p c  can be obtained directly from the rate at which 
momentum is transferred from them to the Peierls distortion. This rate of transfer is 
approximately 

F , = - Z m d  (22) 
k 

where m is the free-electron mass, d = (-e8/h2)d2Ek/dk2 is the acceleration of an 
electron in a state k close to the CDW energy gap and the sum is taken over occupied 
states. This expression intentionally ignores scattering, which transfers momentum to 
phonons or defects, and any band curvature not associated with the Peierls gap (and not 
shown in figure l), which represents transfer from % to the electrons, and from them 
directly to the lattice. With Ek as in (l), and the idealised band structure, one has 

md = te%WA2/(Y’ + A2)3/2 (23) 
from which, in terms of reduced variables, 

sinh[a(y2 + 62)1/2/t] 
pc  = 62 Ioffi (y2 + S2)3’2{cosh[a(z - p)/ t ]  + cosh[a(y2 + d2)/t]} dY (24) 

where, as previously, W S 2, 1/B, A ;  a Fermi distribution, implying strong scattering 
of single electrons, coupled negligibly to phasons, is assumed. 

In the elastic range z < zl,  p c  proves to be slightly greater than the reduced gap 6 
(by no more than 3% when t < 0.5,13% when t = 0.9, and 38% when t = 1). As p c  is a 
function of z - p ,  screening can again be taken into account by scaling, as in (20). 

As Fe = da/dx,  with x measured along the CDW, a field % acting on a length 2L of 
CDW, pinned at its ends, causes the limiting stress s1 to be reached at the ends when 

S 1  

V, = 8 L  = (Ao/e)  1 ds/pc 
0 

giving the critical voltage V, associated with phase-slip at a single site. When t = 0 
this is equal to Ao/e. The broken curve in figure 5(a) shows its behaviour at other 
temperatures: V, is proportional to s1 when tis small, but when t -- 1 (where pc varies as 
(1 - t)1/2) it becomes proportional to (1 - t ) ,  whereas s1 varies as (1 - t)3/2. 

4. Comment 

4.1. Applicability 

The ability of the model to describe real CDW is limited by its use of mean-field theory 
in a one-dimensional situation, and by the assumption that the free energy of the CDW 
depends only on the periodicity Q. 

That mean-field theory appears to describe CDW in quasi-low-dimensional metals 
adequately is presumably a result of the inter-chain correlation provided by Coulomb 
coupling. Although not expressed by the one-dimensional band structure (the parallel 
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planes of Fermi surface are spanned by Q having arbitrary component transverse to the 
chain direction), this coupling provides the CDW with shear strength, so that a unique 
Peierls distortion, with negligible fluctuations, is possible. 

The extension of the model to include shear is elementary: the shear adds to the free 
energy and so tends to reduce 6, but, as the relevant correlation length El is of the same 
order as the separation between chains, is not likely to be the immediate cause of collapse 
in the CDW. Phase-slip may still be regarded essentially as the result of longitudinal stress, 
with the shear strength limiting the extent to which that stress can be conveyed laterally. 

The assumption that Q determines the free energy of the CDW is a more serious 
limitation. However, although this makes the model incapable of dealing with the actual 
process of phase-slip, it need not prevent it from specifying the condition for phase-slip 
to commence. 

Clearly, the use of Q to define the state of the static CDW is legitimate only to the 
extent that the band structure of figure l (b)  is not invalidated by indeterminacy in 
the electronic wavevectors k. Although such indeterminacy may arise from the direct 
influence on the electronic Bloch states of the obstacles to CDW motion, the range over 
which those states are modified is small (-kF1) in comparison with Ell. As far as the 
elastic behaviour of the CDW is concerned, the result is merely to increase the effective 
size of the obstacle. 

The indeterminacy in k ,  which limits the validity of the model, is, as mentioned at 
the outset, that arising from non-uniform spatial variation in Q. It is evident from § 3 
that this restricts the use of the elastic limit there derived to situations where strain is 
uniform on a scale l$'z,. This condition is not difficult to satisfy in one-dimensional 
situations (where it requires the separation of the obstacles at which phase-slip occurs 
to be large compared with E1l/zl), but is more restrictive in three dimensions, where 
the obstacles have to be large in comparison with l$z1 and El/zl respectively in the 
longitudinal and transverse directions. Close to smaller obstacles the strain is sig- 
nificantly non-uniform, and the elastic limit provides merely a necessary condition for 
phase-slip (i.e. that the strain should exceed the limit locally) and a sufficient condition 
(that the limit is exceeded over a length Ejl/z1). 

4.2. Orders of magnitude 

As a guide to orders of magnitude, a representative (but hypothetical) CDW will be 
considered, having T p  = 100 K, no = cmP3, Q = 5 X lo7 cm-' and W = 
1.6 X J = 1 eV. The units defined in § 3 are then: for electron energy, A. = 
2.4 X J (15 meV); free energy density, N A ;  = 0.036 J ~ m - ~ ;  stress, noAo = 
2.4 J ~ m - ~ ;  and elastic modulus, now = 160 J ~ m - ~ .  The longitudinal coherence length 

The screening parameter A is defined as - (n  - no)/NeV,, where N = noW and V ,  is 
the electrical potential that the electrons on the CDW chains experience when n departs 
from the original value no. Apart from a geometrical factor of the order of unity, V, can 
be expressed (in SI units) as -e(n - no)d2/eo,  where d is some average separation 
between the charge associated with (n  - no) and the induced screening charge. Thus 
A = (eo/e2)(W/nod2), or 5.5/d2 when d is measured in Bngstroms, with W and no as 
above. 

Evidently screening, in the present sense, is negligible unless it occurs on a micro- 
scopic scale, with d of the same order as atomic separations. Such screening is possible 
in NbSe3, and in monoclinic TaS3 above 160 K, in which other conducting chains lie 

is about 300 A when t = 0. 
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between those on which the CDW forms. For these materials, values of A - 0.5 appear 
possible. In other known CDW conductors A should be practically zero, allowing no 
macroscopic departure of the CDW chains from neutrality, even on the scale of E, , ,  

The unscreened elastic modulus (given by figure 4, in units of 160 J ~ m - ~ )  is about 
800 J cm-3 when t = 0.5, and nearly lo4 J cm-3 when t = 0.3. Screening with A = 0.5 
limits K to 480 J cm-,, even when t = 0. Figure 5(a) gives the limiting stress s1 and 
equivalent voltage Vs (both independent of screening) in units respectively of 2.4 J cm-, 
and 15 mV. The limiting strain in the unscreened case is available from figure 5(b) :  the 
maximum at t = 0.75 corresponds, with present values of W and Ao, to strain 
Q/2kF1 (=zAo/W) approximately 3.5 X loF3. In the presence of screening with A = 
0.5, the maximum strain is sightly larger (4.4 x and occurs at a lower temperature 
( t  = 0.55). 

4.3. Comparison with experiment 

The experimental evidence that CDW behave in this way, at least in order of magnitude, 
is suggestive rather than conclusive, partly because many properties cannot easily be 
measured directly. 

4.3.1. Elastic modulus. Except for those in which the CDW and lattice are strained 
together, no unambiguous measurements of elastic modulus in CDW have been made. 
Values of the order predicted above were suggested by early measurements of memory 
phenomena in NbSe3 [20], but are now suspect, in view of concentration of distortion 
near current terminals mentioned below. Evidence of the low-temperature rigidity of 
unscreened CDW has been provided, however, by the recent observation of Frohlich 
conduction free of dissipation, except for that incurred in overcoming the threshold field 
%T i2I1. 

4.3.2. Limiting stress, and voltage inducing phase-slip. Where voltages associated with 
phase-slip have been measured, in short specimens whose behaviour is dominated by 
processes at current terminals, they have proved to be an order of magnitude smaller 
than the V, just predicted, while showing roughly the same dependence on temperature. 

One known cause of discrepancy is that phase-slip can be induced thermally, before 
the limiting stress is reached. This has been shown to happen, at temperatures above 
0.5 Tp ,  in NbSe, [22] ando-TaS3 [23], and leads to an ill-defined threshold field. However, 
even where the process is athermal, the applied voltage necessary to induce phase-slip 
will be smaller than V, when, as is usual, stress is concentrated by the use of terminals 
on the side of the crystal. 

The resemblance between the behaviour of V, in figure 5(a) ,  and the almost universal 
tendency of the well defined (and presumably athermal) threshold fields CeT in bulk 
material to increase at low temperatures, suggests that stress-induced phase-slip is 
involved there also. Thresholds of the magnitude observed (0.01-1 V cm-'), together 
with the observation that the moving CDW retains phase coherence over macroscopic 
distances, are consistent with phase-slip at obstacles extending over only part of the 
crystal cross section, with stress concentrated in their vicinity. With np such obstacles 
per unit volume, each having effective area S (+Et) normal to the chains, the present 
model gives CeT = 2V,npS; CeT - 0.01 V cm-' might correspond, for example, to np = 
5 x cm-,, s = (100 A)2. 
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If CeT indeed represents the threshold for phase-slip, its rapid increase as Tapproaches 
T p  is in apparent conflict with the behaviour of V,. A possible explanation, due to Lee 
and Rice [ 5 ] ,  is that close to pinning centres Tp (and thus A and sl) is enhanced, while 
the effective value of pc vanishes at the somewhat lower T p  that applies elsewhere. 

4.3.3. Strain. Attempts to measure the longitudinalstrainin CDW, using x-ray diffraction, 
have produced only negative results [24--261, though shearing has been detected [26]. 
This is not unexpected, in view of the small limiting strain that the model predicts. 

Less easy to reconcile with the model is the electrical memory phenomenon known 
as the ‘overshoot’ or ‘pulse-sign memory’ effect, in which a field-induced distortion of 
the CDW is preserved by pinning. In the case of the higher-temperature CDW in NbSe3 
the distortion, which has been found to be concentrated near current terminals and may 
also include shear, appears to involve longitudinal strains much larger than the limiting 
values predicted above [22]. This, it has been suggested [14], probably indicates the 
presence of dislocations. 

4.3.4. The metastable state associated with screening. The estimate in 04.2 makes it 
doubtful whether any material provides enough screening (A  > 1) support the low- 
temperature metastable state suggested by § 3.3. Neither is it obvious how that state 
could be distinguished experimentally from the other metastable states, common in 
pinned CDW, whose relaxation often leads to detectable changes in single-particle trans- 
port properties. Of the many observations of such relaxation, those on NbSe3 at tem- 
peratures below 4.2 K ( t  < 0.07) [27] seem the most likely to be of the state in question. 

4.3.5. Application to the FLR model of pinning. Caution is necessary in applying the 
results derived above in conventional (FLR) treatments of pinning. In the case of strong 
pinning, and when screening is absent, the mean value of the strain introduced by fixing 
the phase of the CDW at points separated by a distance L ,  which may amount to n/QL,  
inevitably exceeds the elastic limit zlAo/Wpredicted by the model as T - +  0. However, 
the restriction to a length L then introduces enough uncertainty into Q to invalidate the 
model, so that at low temperatures the problem requires microscopic treatment. 

With weak pinning the limitations of the model are less apparent. The scale L on 
which strain is effectively uniform is now the Lee-Rice length, measured in the chain 
direction. This is proportional to KIIK,/n,, where ni is the concentration of pinning 
centres and Kll, K ,  are elastic moduli parallel and perpendicular to the chain direction. 
At low temperatures K ,  is likely to be roughly constant, so that L cc Kli/ni. Provided 
that ni is not too large, n/QL then remains less than zlAo/W ( m l / K )  as T+ 0, and the 
use for KI, of the macroscopic elastic modulus K given by the model would seem to be 
justified. 

4.3.6. Transportproperties. Finally, the role of screening in the dynamics of CDW deser- 
ves mention. On account of pinning, motion of CDW involves the establishment of strain, 
in the course of which electrons have to be transferred from regions in which Q > 2kF 
to others where Q < 2kF. It is usual to assume that the transfer is of single particles 
already excited across the CDW gap, and, in materials that become insulators as T--2 0, 
an observed increase in the viscosity of the CDW at low temperatures has been accounted 
for qualitatively as a result of the decrease in conductivity due to such particles [28]. 
Quantitatively, however, the resistance of the CDW to changes in strain is greater than 
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Figure 7. Thermally activated processes involved 
in the isothermal distortion of a CDW at an 
obstacle. Each process transfers an electron from 
the region where Q > 2kF(I), to that where 
Q < 2kF(11). The circles denote electrons (0) and 
holes (0). 

-0 

expected, on the basis of reasonable assumptions regarding the distance over which the 
electrons move. 

It is suggested that the discrepancy arises because the maintenance of neutrality 
requires electrons to be excited thermally across the CDW energy gap. As the transfer of 
single particles alone, even if sufficient to restore neutrality, would leave the system 
thermally out of equilibrium, such transitions are essential to the establishment under 
stress of a state of minimum free energy. 

Examples of transitions associated with distortion of a CDW at an obstacle are shown 
in figure 7 .  An increase in the distortion, transferring electrons from region I (where 
Q > 2kF) to region I1 (Q < 2kF) , cannot be accomplishedisothermally without excitation 
across the energy gap. At low temperatures the viscosity of the CDW, while showing 
activated behaviour qualitatively similar to that of the resistivity when the CDW is 
undistorted, is likely to be much greater (and to exhibit a somewhat larger activation 
energy) than the resistivity would suggest. 

The difficulty of transferring electrons between strained regions of the CDW at low 
temperatures also has the effect of postponing the occurrence of phase-slip when a 
voltage in excess of V, is applied to an initially undistorted CDW. This may conceivably 
be relevant to the delayed onset of Frohlich conduction in ‘switching’ specimens [29]. 
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